Heterosynaptic Regulation of External Globus Pallidus Inputs to the Subthalamic Nucleus by the Motor Cortex

نویسندگان

  • Hong-Yuan Chu
  • Jeremy F. Atherton
  • David Wokosin
  • D. James Surmeier
  • Mark D. Bevan
چکیده

The two principal movement-suppressing pathways of the basal ganglia, the so-called hyperdirect and indirect pathways, interact within the subthalamic nucleus (STN). An appropriate level and pattern of hyperdirect pathway cortical excitation and indirect pathway external globus pallidus (GPe) inhibition of the STN are critical for normal movement and are greatly perturbed in Parkinson's disease. Here we demonstrate that motor cortical inputs to the STN heterosynaptically regulate, through activation of postsynaptic NMDA receptors, the number of functional GABAA receptor-mediated GPe-STN inputs. Therefore, a homeostatic mechanism, intrinsic to the STN, balances cortical excitation by adjusting the strength of GPe inhibition. However, following the loss of dopamine, excessive cortical activation of STN NMDA receptors triggers GPe-STN inputs to strengthen abnormally, contributing to the emergence of pathological, correlated activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Striking the Right Balance: Cortical Modulation of the Subthalamic Nucleus-Globus Pallidus Circuit

The subthalamic nucleus-globus pallidus network is a potential source of oscillations in Parkinson's disease, but the mechanism is unknown. In this issue of Neuron, Chu et al. (2015) present a cortically driven form of heterosynaptic plasticity that could promote oscillatory activity after dopamine depletion.

متن کامل

The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials.

Focal motor seizures are characterized by transient motor behaviour that occurs simultaneously with paroxystic activity in the controlateral motor cortex. The implication of the basal ganglia has already been shown for generalized seizure but the propagation pathways from the motor cortex towards the basal ganglia during focal motor seizures are largely unknown. With a better knowledge of those...

متن کامل

Synchrony in Parkinson's disease: importance of intrinsic properties of the external globus pallidus

The mechanisms for the emergence and transmission of synchronized oscillations in Parkinson's disease, which are potentially causal to motor deficits, remain debated. Aside from the motor cortex and the subthalamic nucleus, the external globus pallidus (GPe) has been shown to be essential for the maintenance of these oscillations and plays a major role in sculpting neural network activity in th...

متن کامل

Experimental hemiplegia in the monkey: basal ganglia glucose activity during recovery.

Unilateral ablation of cerebral cortical areas 4 and 6 of Brodmann in the macaque monkey results in a dense contralateral hemiplegia that recovers partially with time. During the phase of dense hemiplegia, the local cerebral metabolic rate for glucose (lCMRGlc) is decreased significantly in the caudate nucleus, putamen, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus of ...

متن کامل

The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey.

The aim of the present study was to elucidate the organization of the interconnections between the subthalamic nucleus and the two segments of the globus pallidus in squirrel monkeys. By making small deposits of tracers in the two segments of the globus pallidus, we demonstrate that interconnected neurons of the subthalamic nucleus and the external pallidum innervate, via axon collaterals, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2015